便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称基于融合深度学习模型的集成电路缺陷图像识别分类系统
申请日2019-09-25
申请号/专利号CN201910910060.X
专利权人上海众壹云计算科技有限公司
申请人上海众壹云计算科技有限公司
发明人/设计人林义征
公告日2020-02-07
公告号CN110766660A
法律状态审中
专利类型发明
行业分类集成电路

摘要

本发明公开了一种基于融合深度学习模型的集成电路缺陷图像识别分类系统,提出使用基于深度卷积神经网络(CNN)的融合模型的方式对晶圆的缺陷图像进行在线自动识别分类,及时地侦测晶圆各类缺陷数量的变化;其核心机制是由两种融入学习机制的深度学习模型构建的缺陷图像特征提取方法,该深度CNN融合模型基于SE_Inception_V4、SE_Inception_ResNet_V2两种框架构建了Combined3缺陷图像分类模型,并利用序列模型优化(SMBO)算法对融合深度CNN识别模型进行超参优化,提升模型识别精度。增加了自动化水平。降低了识别成本,原因是AI模型取代工程师,并且工作效率大大提高。基于实时的识别分类结果,工程师可以及时统计缺陷数据,查找原因,进而调整工艺参数,提高良品率。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层