便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称一种结合深度学习的储层物性参数预测方法
申请日2019-11-20
申请号/专利号CN201911138179.6
专利权人成都理工大学
申请人成都理工大学
发明人/设计人王俊;曹俊兴;袁珊;尤加春
公告日2020-02-28
公告号CN110852527A
法律状态审中
专利类型发明
行业分类信息技术

摘要

本发明公开一种结合深度学习的储层物性参数预测方法,步骤为:引入MIC定量测度物性参数与测井曲线的非线性相关性,选取对物性参数响应明显的测井曲线;引入CEEMDAN对物性参数数据序列分解,获得本征模态函数IMF分量和剩余RES分量,对物性参数数据序列平稳化处理;引入SE对各IMF分量和RES余量的复杂度评价,将熵值相近的分量序列重组得到新本征模态分量;对新本征模态分量数据归一化处理后划分为训练集和测试集;引入LSTM循环神经网络对重构的新分量建立预测模型,获得各新本征模态分量的预测值;将各新本征模态分量的预测值反归一化并进行叠加重构得到物性参数预测结果。本发明的方法减少了冗余信息与预测分量建模数,提高预测精度和预测速度。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层