便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称基于分数阶神经网络和双容积卡尔曼的电池SOH在线估计方法
申请日2017-07-28
申请号/专利号CN201710628189.2
专利权人南京航空航天大学
申请人南京航空航天大学
发明人/设计人陈则王;林娅;朱晓栋;崔江;王友仁
公告日2019-06-14
公告号CN107436411B
法律状态有效
专利类型发明
行业分类

摘要

本发明公布了一种基于分数阶神经网络和双容积卡尔曼的电池SOH(健康状态)在线估计方法,属于电池健康管理领域。具体步骤为:(1)通过传感器采集电池的可见状态量;(2)离线训练分数阶神经网络模型;(3)将步骤(1)采集的实时数据加入初始训练数据集,使模型能够更加准确地描述电池特性;(4)建立一个离散状态空间模型来表征电池隐含状态和可见状态之间的映射函数;(5)利用双容积卡尔曼滤波(DCKF)算法对分数阶神经网络模型进行在线更新,同时对隐含状态进行在线估计。本发明能够在线更新蓄电池模型,使模型适应不断变化的动态环境,提高了电池健康管理的效率和准确度。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层