便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称一种基于卷积神经网络的TFDS故障图像自动识别方法
申请日2016-07-15
申请号/专利号CN201610561060.X
专利权人北京航空航天大学
申请人北京航空航天大学
发明人/设计人孙军华;肖钟雯
公告日2019-02-01
公告号CN106226050B
法律状态有效
专利类型发明
行业分类

摘要

本发明公开了一种基于卷积神经网络的TFDS故障图像自动识别方法,该方法基于深度学习理论,由一个二级级联的卷积神经网络模型构成:第一级为多类易故障区域同步定位的网络模型,结合多故障区域的空间相互位置关系约束,实现多故障目标区域同步精确定位;第二级为故障判别网络模型,对第一级定位的区域实现故障和非故障的判断。本发明提供的TFDS多类故障同步自动识别方法无需针对不同故障分别设计识别方法,借助深度学习中的卷积神经网络理论,通过学习训练的方式自适应地抽取特征,能够对多故障进行同步定位和故障判断,且具有高效性和强鲁棒性。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层