便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称一种利用样本特征学习分类的红外弱小目标检测方法
申请日2016-06-27
申请号/专利号CN201610479981.1
专利权人北京航空航天大学
申请人北京航空航天大学
发明人/设计人白相志;毕研广
公告日2019-04-05
公告号CN106127253B
法律状态有效
专利类型发明
行业分类

摘要

本发明一种利用样本特征学习分类的红外弱小目标检测方法:设含有目标的区域为正样本,背景区域为负样本,且已从实际红外图像中获得足够多带标签的正负样本。首先,从灰度分布、边缘、信息熵和能量四方面对样本分析,提取出拟合残差、中心周围对比度、边缘拟合圆半径、边缘拟合圆圆心偏移量、边缘拟合圆圆心距方差、基准信息熵对比度和纹理能量对比度7个特征;然后,通过包裹式选择、前向搜索方式,将受试者工作特性曲线下方的面积作为评价指标,从所有特征中选出最优特征子集;随后,提取正负样本的最优特征子集训练支持向量机分类器,进行监督学习;最后,通过对图像进行高帽变换预处理得到候选目标,并通过分类器甄别筛选得到最终检测结果。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层