便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称面向癫痫脑电信号的特征提取与自动识别方法
申请日2015-05-29
申请号/专利号CN201510284550.5
专利权人北京航空航天大学
申请人北京航空航天大学
发明人/设计人李阳;罗美林;谭思睿
公告日2018-04-13
公告号CN104887224B
法律状态有效
专利类型发明
行业分类

摘要

本发明提出了一种面向癫痫脑电(Electroencephalogram,EEG)信号的特征提取与自动识别方法。该方法首先由脑电信号通过小波变换得到时频图像,并按频率由低到高,将时频图分割成δ、Θ、α、β、γ五个频率的时频子图;接着,应用高斯混合模型(Gaussian mixture model,GMM)对时频图能量密度的概率分布进行估计,将高斯混合模型对应的参数(均值、方差、权值)作为脑电信号的特征;然后,应用特征加权算法(ReliefF)和支持向量机递归特征消除法(Support Vector Machine‑Recursive Feature Elimination,SVM‑RFE)对上述特征进行选择,得到最大程度表征正常脑电信号与癫痫脑电信号差异的特征;最后,通过模式分类和机器学习验证本发明方法所提特征在自动识别癫痫上的有效性,具体表现为识别的正确率与模型的泛化性能。与现有相关技术相比较,本发明方法提取识别的特征对癫痫脑电识别正确率高,模型泛化性能好,在辅助癫痫脑疾病的临床诊断和自动识别方面具有重要意义。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层