便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称一种用于压缩感知图像信号重构的卷积神经网络
申请日2019-02-28
申请号/专利号CN201910148782.6
专利权人兰州交通大学
申请人兰州交通大学
发明人/设计人刘玉红;李翠然;杨桂芹;刘树英;杨丹凤;付福祥
公告日2019-06-21
公告号CN109922346A
法律状态审中
专利类型发明
行业分类

摘要

本发明公开了一种用于压缩感知图像信号重构的卷积神经网络,它是一个全卷积神经网络,包括一个全连接层和九个卷积层;首先将图片分成32×32大小的块,其次进行CS测量。所述全连接层采用CS测量作为输入,并输出尺寸为32×32的特征图;本发明具有较低的复杂度及较好的恢复性能,还具有较强的鲁棒性和较高的时间效率,峰值信噪比(PSNR)较传统CS算法TVAL3的PSNR提高了7.2%‑13.95%,较D‑AMP的提高了7.72%‑174.84%。重构图像所需的时间比TVAL3快4‑5倍,比D‑AMP快244‑283倍,具有较高的时间效率,实现了实时重构,和传统重构算法相比,在相同的测量速率下,能更有效地提取场景信息,获得更好的重构效果,并且在降低测量速率时,本发明的信噪比较传统算法的信噪比降低的更缓慢,具有较好的鲁棒性。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层