便携式应急电源
镀铜焊丝的缺陷检测方法、装置、设...
电码的自动识别方法及存储介质
基于强化学习的楼栋摆放方法、装置...
用于观测水下生物的系统及其方法
一种电子设备的空中固件差分升级方...
一种印刷模切张力自动控制系统及其...
低功耗状态监控设备
一种利用RTP扩展头部解决视频帧...
一种高衍射效率相位型空间光调制器...
一种家装板材运输用包装机器人
航空发动机精密管路及其航空发动机...
宽光谱吸收的薄膜太阳能电池及光伏...
一种基于磁通压缩的脉冲磁体装置及...
一种总线访问仲裁装置及方法
一种处理网络抖动的方法及装置
基于光芯片的数据处理方法、装置、...
一种基于小基线条件下的大畸变广角...
一种自动识别设备间网络拓扑结构的...
基于光芯片的数据处理方法、装置、...
企业介绍页面,左右侧内容分别复制到相应容器即可,起始结束位置代码已作标注
专利名称基于预训练随机傅里叶特征核LMS的超参数优化方法
申请日2018-10-30
申请号/专利号CN201811280151.1
专利权人哈尔滨理工大学
申请人哈尔滨理工大学
发明人/设计人陈寅生;罗中明;刘玉奇
公告日2019-01-15
公告号CN109217844A
法律状态审中
专利类型发明
行业分类

摘要

基于预训练随机傅里叶特征核LMS的超参数优化方法,它用于核自适应滤波器的超参数优化技术领域。本发明解决了为保证算法的精度性能以及降低算法计算复杂度,如何获取一组超参数值的问题。本发明在预训练集合的基础上,实现各维度下的随机傅里叶特征的性能评价,在最小均方误差准则下能够通过预训练得到的最小均方误差值确定最优维度下的一组傅里叶特征超参数取值集合,本发明的方法减少了达到精度条件所需的随机傅里叶特征的维度从而降低了复杂度,且在自适应滤波系统中提高被建模系统与随机傅里叶特征网络的耦合度,克服了超参数取值由于随机采样差异性带来的稳态性能不稳定的问题。本发明可以应用于核自适应滤波器的超参数优化技术领域用。
  关于我们  | 帮助中心  |  服务清单  |  发展历程 |  网站地图  |  手机访问

Copyrights 2016-2020  

南京锐阳信息科技有限公司 版权所有

苏ICP备17027521号-1

地址: 南京市秦淮区永智路5号五号楼3层